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Appendix 1. 

Definitions of statistical terms. 

 

Null Hypothesis (H0): A hypothesis set up with the intention of falsifying (nullifying) 
it. In most NHST studies H0 typically expects that there is no experimental effect (zero sized 
effect). 

Alternative Hypothesis (H1): A generic alternative hypothesis expects some kind of 
experimental effect, typically non-zero difference between treatment levels and/or groups. In 
principle, the general H1 is the complement of H0. However, in practice such generic H1 is so 
hard to define that it may be useless in practical terms (Hubbard and Bayarri, 2003; Jaynes, 
2003). So, while H1 refers to a general alternative hypothesis (the complement of H0) most 
practicing researchers have a specific H1 in mind. 

P value: The p value (p) is one possible continuous measure of the discrepancy between 
a particular model, called null hypothesis or H0, and the data (Gelman 2013). More specifically, 
p is the probability of observing the experimental data or more extreme data under the 
assumption that H0 is correct. In yet another way, we can link the p value to the test statistic: 
The p value is the probability that a test statistic, computed on the assumption that H0 is true, 
would take a value as extreme or more extreme than the one observed (Murdoch et al. 2008). 
The p value is a random variable that depends on sample size, effect size and random sampling 
variation in the data and is also affected by potential biases. Hence, two studies measuring 
identical underlying effect sizes with the same sample size can find different p values. 

Type I error: False positive error. The error of mistakenly rejecting H0 and therefore 

reporting a statistically significant finding when H0 is really true. This Type I error rate can be 
controlled by the α level set by the experimenter. 

Alpha (α) level: α is the long run probability of committing a Type I error. α is the 
critical p value under which the test result is declared to be ‘statistically significant’ (p ≤ α) . 
Typically α = 0.05 which means that on the long run 100α% = 5% of findings will be 
statistically significant provided that H0 is really true. The Type I error rate is fix on the long 
run irrespective of the sample size and the p value found in a study. Note that setting α to any 
particular level is completely arbitrary and it does not have any mathematical justification. 

Complementary α level (1-α); confidence level: The long run probability of retaining 
H0 if H0 is really true. E.g. if α = 0.05 then the confidence level is 1 - α = 0.95. 

Type II error: False negative error. The error of mistakenly not rejecting H0 and 
therefore reporting a statistically non-significant finding when H1 is really true. Provided that 
we know exactly the expected effect size Type II error can be controlled by setting the sample 
size. 

β: The long run probability of committing a Type II error assuming that a particular H1 

with a particular effect size and probability distribution is true (ie. H0 can be rejected). β is the 
complement of Power, that is, β = 1 - Power. 

Power: The power of a study is the long-run probability of detecting true positive 
findings if they really exist given that H1 has a particular probability distribution and a 
particular effect size. Power is a function of the sample size and effect size. Typically, Power 
≥ 0.8 is considered optimal. This means that if there is an experimental effect equal to or larger 
than the expected effect size (H1 is true) then using a given sample size researchers would have 
80% chance to identify this true effect in a long run of experiments. 

Odds: The ratio of probabilities. For example, if the probability of H0 is pr(H0) = 9/10 
and pr(H1) = 1/10 then the H0:H1 odds are: 9/10 : 1/10 = 9:1 = 9. Conversely, if the odds of 
H0:H1 data are 9, ie. 9:1 than pr(H0)=9/(9+1) = 9/10; and p(H1) = 1/(9+1) = 1/10. 
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Prior probability of a hypothesis: The pre-study probability of the truth of a 
hypothesis without taking into account any information from the data of the actual study. Note 
that the term ‘prior’ only refers to the fact that p(H0) is independent from study results and does 
not necessarily refer to temporal precedence (Jaynes, 2003). 

FRP: False report probability: The long run probability of H0 being true given a 
significant result with particular α and β levels, with particular Odds of true positive and 
negative results and with particular experimenter Bias in a long series of experiments. 

TRP: True report Probability: The long run probability of H1 being true given a 
significant result with particular α and β levels, with particular Odds of true positive and 
negative results and with particular experimenter Bias in a long series of experiments. 

 
 
References are listed in the main text. 
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Appendix 2. 
Major confusions about the p value. 
 
1. Many practicing researchers and even some statisticians confuse the roles of the p 

value and α (Hubbard and Bayarri 2003). These researchers set a significance level of α = 0.05 
before they run an experiment but once they compute the p value they falsely assume that the 
p value will now represent the actual data-dependent Type I error probability somehow 
replacing the Neyman-Pearson α level while also interpreting it as the strength of evidence 
against H0 as used by Fisher (Goodman, 1993; 1999; Nickerson 2000). However, α is always 
fixed independently of what p value we find in an experiment whereas p values can be 
considered random variables, varying widely from experiment to experiment (Murdoch et al. 
2008; Hung et al. 1997; Simonsohn et al. 2014a,b; Sterling 1959). Currently, the expression 
'significance level' is used interchangeably for both the p value and α reflecting the confusion 
about them (Hubbard and Bayarri 2003).  

2. Many practicing researchers falsely assume that if p = 0.01 then the probability of a 
false positive finding given the data (pr(H0|data) is 0.01. Conversely, they also assume that if 
p = 0.01 then the probability of a truly positive finding given the data (pr(H1|data) is 1 - p = 
0.99. Yet, others confuse the p value with the 'updated' H0:H1 odds after a study was run, and/or 
with replication success (Bakan, 1966; Meehl, 1967; Pollard and Richardson, 1987; Cohen 
1994; Hunter, 1997; Goodman, 1999; Oakes, 1986; Gliner et al. 2002; Wilkerson and Olson, 
2010; Hoekstra et al. 2014; Castro-Sotos 2007; 2009). These false assumptions are not only 
thoroughly wrong, they also deeply underestimate the probability of false positive findings and 
highly overestimate the probability of truly positive findings and replication success. The 
network of confusions outlined here constitute what Goodman (1999) termed the 'p value 
fallacy' (see Goodman, 1999; Goodman 2008; Nickerson 2000 and Wagenmakers, 2007 for 
excellent reviews). 

 
 
References are listed in the main text. 
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Appendix 3. 

False report probability and True report probability 

 
For the convenience of the reader this Appendix restates part of the Supplementary Material 
from Szucs and Ioannidis (2017) PLoS Biology; 15(3): e2000797; 2 March 2017.  
 
If we use nil-null Hypothesis Significance Testing (NHST) then the long run False Report 
Probability (FRP) is the long run probability that the null hypothesis (H0) is true when we get 
a statistically significant finding. The long run True Report Probability (TRP) is the long run 
probability that the alternative hypothesis (H1) is true when we get a statistically significant 
finding. Computationally, FRP is the number of statistically significant false positive findings 
divided by the total number of statistically significant findings. TRP is the number of 
statistically significant truly positive findings divided by the total number of statistically 
significant findings. 

Calculations are set out below. Figure 3 and Supplementary Figure 1 provide graphical 
illustrations. 

FRP and TRP can be computed by Bayes' theorem. If we take 'sig' to stand for 'statistically 
significant test outcome' then the total probability of finding a statistically significant result is: 

pr(sig) =  pr(sig|H ) ∗ pr(H ) +  pr(sig|H ) ∗ pr(H )  ; ( . 1) 

Hence, FRP and TRP can be written as: 

FRP =  
pr(sig|H ) ∗ pr(H )

pr(sig)
  ; ( . 2) 

TRP =  
pr(sig|H ) ∗ pr(H )

pr(sig)
  ; ( . 3) 

Considering a long run of NHST studies, the long run probability of having a significant test 
outcome when H0 is true is α and the long run probability of having a significant test outcome 
when H1 is true is Power = 1 - β. That is, =  pr(sig|H ) and Power =  p(sig|H1). Hence, Eq.2. 
and Eq.3. can be re-written as: 

FRP =  
α ∗ pr(H )

pr(sig)
  ; ( . 4) 

TRP =  
Power ∗ pr(H )

pr(sig)
  ; ( . 5) 

Eq.2. and Eq.3. can also be expressed in terms of odds ratios of true H0 and true H1 situations. 
For example, we can denote the odds of true H0 situations as ‘O’ and write: 

O =  
( 0)
( 1)

 ; ( . 6) 

We can express pr(H0) using the above as: 



5 
 

pr( ) =  ∗ pr(H )  ; ( . 7) 

then Eq.2. Can be rewritten as: 

FRP =  
pr(sig|H ) ∗ O ∗  pr(H )

pr(sig|H ) ∗ O ∗  p(H ) +  pr(sig|H ) ∗ pr(H )
  ; ( . 8) 

This can be simplified by pr(H ): 

FRP =  
pr(sig|H ) ∗

pr(sig|H ) ∗ +  pr(sig|H )
  ; ( . 9) 

Using α and Power = 1 - β we can write: 

FRP =  
Oα

Oα +  Power
  ; ( . 10) 

TRP =  
Power

Oα +  Power
  ; ( . 11) 

FRP + TRP = 1; e.g.: 

Oα
Oα +  Power

+ 
Oα +

=  
Oα +
Oα +

= 1  ( . 12) 

Consequently: 

FRP = 1 −  TRP  ( . 13) 

and 

TRP = 1 −  FRP  ( . 14) 

Equivalently to the above, we can also express the odds of true H1 situations as the ratio of 
pr(H1) and pr(H0) and denote it with ‘R’ as in Ioannidis (2005): 

=  
( 1)
( 0)

 ; ( . 15) 

pr( ) =  ∗ pr( )  ; ( . 16) 

Substituting Eq.16. into Eq.3.: 

TRP =  
pr(sig|H ) ∗ ∗ pr(H )

pr(sig|H ) ∗ p(H ) +  pr(sig|H ) ∗ R ∗ pr(H )
  ; ( . 17) 

Simplifying: 

TRP =  
pr(sig|H ) ∗

pr(sig|H ) +  R ∗  
  ; ( . 18) 

Using α and Power = 1 - β we can write: 

TRP =  
R ∗ Power

α +  R ∗ Power
  ; ( . 19) 
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FRP =  
α

α +  R ∗  Power
  ; ( . 20) 

Eq.19. is equivalent to the one used by Ioannidis (2005) with a slightly different notation. 

He defined PPV = TRP; Power = 1-β and equivalently to Eq. 19 he wrote: 

PPV =  
(1 − β) ∗ R

α + (1 −  β) ∗
=  

(1 − β) ∗ R
α + R −  β

  ; ( . 21) 

Ioannidis (2005) also defined Bias, signified by ‘u’. On the one hand, bias results in 
categorizing fraction u (u*(1 - α)) of otherwise true negative results (in case there is no bias) 
as positive results. On the other hand, bias results in categorizing fraction u (uβ = u*(1 - Power)) 
of otherwise (in case there is no bias) missed true positive results as positive results. That is, 
bias alters Eq.19. as: 

TRP =  
Power ∗ + ∗ (1 −  Power) ∗ R

α + u ∗  (1 −  α)  +   Power ∗  R + ∗  (1 −  Power) ∗ R
  ; ( . 22) 

Using the notation of Ioannidis (2005) this can be rewritten as: 

PPV =  
(1 − β) ∗ R + uβR

α + u(1 −  α) +  (1 −  β) ∗  + βR

=  
(1 − β) ∗ R + uβR

α + u − αu + R −  β + βR
  ; ( . 23) 

Also, notice the relation between O and R: 

=  
( 0)
( 1)

=  
1

 ; ( . 24) 

Hence, 

FRP =  
α ∗

1

α ∗
1

+  Power
 =  

α

α + Power ∗ =  
α

α + Power ∗
; ( . 25) 

 

Similarly: 

=  
( 1)
( 0)

=  
1

 ; ( . 26) 

Hence, 

TRP =  
Power ∗  

1

α +  Power ∗  
1
O

 =  O
α ∗ O + =  

α ∗ O +
   ; ( . 27) 
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Supplementary Figure 1. Conditional probabilities, odds and bias. nP denotes the total 
number of studies testing truely positive effects (true H1). (A1) The relations of α, β and power 
with 1:1 H0:H1 odds with α=0.05 and β=0.4 (α and β are kept at these levels in all examples). 
(A2) The relations of α, β and power with 2:1 H0:H1 odds. Note that the total number of false 
positive significant results is now 2nP×α while the total number of truly positive results is 
Power×nP. (A3) Graphical illustration of computing FRP with 2:1 H0:H1 odds. FRP is the ratio 
of false positives divided by the total amount of results coming up significant (false positives 
+ true positives). In the example FRP = 2nP×α / (2nP×α + Power×nP) = 2×0.05 / (2×0.05 + 
0.6) = 0.1 / 0.7 = 1/7 = 14.28% rather than the often assumed 1/20, or 5%. (A4) Graphical 
illustration of computing FRP with R=1/6; ie. with 6:1 H0:H1 odds. In the example FRP = 
6nP×α / (6nP×α + Power×nP) = 6×0.05 / (6×0.05 + 0.6) = 0.3 / 0.9 = 1/3 = 33.33% of all 
significant results will be false positives. (B1) Graphical illustration of bias with 1:1 H0:H1 
odds (Ioannidis, 2005). Bias increases the proportion of false positives (adds to Type I error) 
and decreases the proportion of false negatives (adds to power). With realistic H0:H1 odds bias 
will increase the proportion of false positive significant results much faster than it will increase 
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power (B2 and B3). Shaded boxes are slightly off scale to enhance the readability of the text. 
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Appendix 4. 

The problem of neglecting H0:H1 odds. 

 

NHST logic is based on the so-called modus tollens1 (denying the consequent) 
argumentation (see Example A1 in Supplementary Table 1): It sets up a H0 model and 
assumes that if the data fits this model than the test statistic associated with the data should not 
take more extreme values than a certain threshold (Meehl, 1967; Pollard and Richardson, 
1987). If the test statistic contradicts this expectation than NHST assumes that H0 can be 
rejected and consequently its complement, H1 can be accepted. While this logic may be able to 
minimize Type I error in well powered quality control tests (2.2) it is inadequate if we use it to 
decide about the truth of H1 in a single experiment (Falk and Greenbaum, 1995). For example, 
the three non-probabilistic arguments following the above structure in Supplementary Table 
1/A1-3 are correct. However, as soon as we introduce probabilities and modify the arguments 
accordingly, they become incorrect (Supplementary Table 1/B1-2). 

For example, let's evaluate Example B2 from Supplementary Table 1. In 
understanding the problem we can fully follow the long run probability view of NHST. H0 
states that you do not have the mortal disease while H1 states that you have the mortal disease. 
Because the data is rare under H0 NHST logic rejects H0 and concludes that you have the mortal 
disease. However, because the statements are probabilistic in some cases where you do not 
have the mortal disease (H0 is true) your test result will be ≥ 3 (Type I error). Conversely, in 
other cases when you do have the mortal disease your test result will be < 3 (Type II error). 
Type I and Type II errors mean that our conclusions always have some space for error and the 
only way to see how much error we have on the long run to is calculate the long run FRP and 
TRP in exactly the same way as in Section 3 of the main text using appropriate α and power 
(1-β) levels and H0:H1 odds. For example, our long run experience may tell us that 100 out of 
101 people do not get the disease but 5 of this 100 will test false positive whereas 1 out of 101 
has the disease and 99% of them will test positive. In this case the odds of not having the 
disease are O = 100:1. The false positive identification rate is α = 0.05 and the true positive 
identification rate is power = 0.99. Hence: 

                                                           
1 It is important to notice the asymmetry between the 'denying the consequent' argument (which 

is valid in a non-probabilistic world) and the 'affirming the consequent' argument which is invalid. This 
asymmetry leads to the existential vacuum of non-interpretable null results in NHST: while it is possible 
to reject H0 (and consequently accept the complement of H0, the general H1) it is not possible to accept 
H0. However, many practicing researchers commit the mistake (Meehl, 1967) and they assume that if 
their results are non-significant (ie. H0 cannot be rejected) it follows that the difference between two 
conditions must be truly zero (H0 can be accepted). The invalid confirmatory structure is: If A then B. 
B. Hence, A. (If H0 than t<3. t<3. Hence, H0.) This is invalid because B can be caused by something 
other than A, the argument does not say that B is exclusively caused by A. For example, even if H1 is 
true but we do not have high enough power than our test statistic will not reach high enough values (t 
remains t < 3) so we cannot reject H0. Taking this example to the extreme, even if H1were really true, 
if we kept power deliberately low we could not reject H0 most of the time but this of course would not 
mean that we could argue that H0 was true. The only case when we could definitively accept H0 is if we 
had perfect power to detect any arbitrarily small deviation from H0 (power = 1 for each effect size). In 
that case the test statistic would be significant in every case when the data were not exactly zero down 
to any arbitrary precision. This would be equivalent to having this valid conclusion: If and only if A 
then B. B. Hence, A. (It is sufficient and necessary to have A so that we can have B.). 
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 =  
 

  
=  

 +  
=  

100 × 0.05
100 × 0.05 +  0.6

=  .8347. 

 
 = 1 − = 0.1653 

 
That is, we only have 16.5% probability of having the disease and more than 80% of 

not having it after such a test in light of long run experience even if we have power = 0.99. 
 

 

 
A. Correct non-probabilistic conclusions 

Example A1 Example A2 Example A3 
Model:  
If A then B. 

Model:  
If Joe is American  
he must be a citizen of the 
USA. 

Model:  
If H0 is true then  
it must be that p > α 

Data: Not B. 
(contradicting the 
consequence of A) 

Data:  
Joe is not the citizen of the 
USA. 

Data:  
p ≤ α 

Hence, not A. Hence, Joe is not American. Hence, H0 is not true. 
 

B. Incorrect probabilistic conclusions 
Example B1 Example B2 
Model:  
If H0 is true than most probably (p > α) 

Model:  
If you do not have the mortal disease (H0) than 
your test score is most probably t < 3 (on an 
arbitrary scale). 

Data:  
(p ≤ α) 

Data:  
Your test score is t ≥ 3. 

Hence, H0 is most probably not true Hence, you most probably have the mortal 
disease (H0 is rejected; H1 is accepted). 

Supplementary Table 1. Examples for the modus tollens argument. See explanation 
in text. 
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Appendix 5. 

The problem of neglecting predictions under the alternative hypothesis (H1). 

 
The example in Table 2 of the main text follows NHST logic: Our model says that if 

H0 is true it is a very rare event that Harold is a member of congress. This rare event then 
happens which is equivalent to finding a small p value. Hence, we conclude that H0 can be 
rejected and H1 is accepted. However, if we carefully explicate all important probabilities it is 
easy to see that we are being mislead by invalid NHST logic. First, because we have absolutely 
no idea about Harold’s nationality we can set pre-data probabilities of both H1 and H0 to 1/2, 
which means that H0:H1 odds are 1:1. Hence, pre-data information is completely uninformative. 
 

pr(H0) = pr(Harold is American) = ½ 
pr(H1) = pr(Harold is not American) = ½ 

 
Then we can explicate the important conditional probabilities of the data (Harold is a member 
of congress) given the possible hypotheses. We can assign arbitrary but plausible probabilities: 
 

pr(data|H0) = pr(Harold is member of congress | American) = 10-7 

pr(data|H1) = pr(Harold is member of congress | not American) = 0 
 

Now we can see the problem2. That is, while the data is indeed rare under H0, its probability is 
actually zero under H1. So, even if p ≈ 0.0000001 (because p = pr[data or more extreme data|H0] 
rather than pr[data|H0]), it does not make sense to reject H0 and accept H1 because this data just 
cannot happen if H1 is true. If we only have these two hypotheses to choose from then it only 
makes sense to accept H0 because the data is still possible under H0 (Jaynes, 2003). We can 
also explicitly evaluate the probability of H0 being true with the help of Bayes' theorem in a 
way which is equivalent to the equations used to evaluate FRP and TRP: 

 

( | ) =  
(        )

(      )

=
( ) × ( | )

( ) × ( | ) +  ( ) × ( | )
=

1
2 ×  10

1
2 × 10 +

1
2 × 0

=

1
2 ×  10

1
2 × 10 + 0

= 1 

 

Now we see that after assigning probabilities and evaluating them properly we have a 
numerical response which is completely in line with our intuition. Instead of being able to reject 
H0, the post-data probability3 of H0 is actually 1.  
References are listed in the main text. 

                                                           
2 Note the important advice which NHST neglects: 'Always write down the probability of everything' (Steve Gull; 
cf. MacKay, 2003; p61). 

3 Note that it is perfectly possible to compute pr(H0|data) thereby avoiding the existential vacuum of dreaded 'null 
results' by both Bayesian inference and by maximum likelihood estimation methods. 


